Proceedings of the 2001 IEEE
International Conference on Robotics & Automation
Seoul, Korea - May 21-26, 2001

Real-Time Robot Learning

Bir Bhanu, Pat Leang, Chris Cowden, Yingqiang Lin and Mark Patterson

Center for Research in Intelligent Systems
University of California, Riverside, CA 92521
{bhanu, pleang, ccowden, yqlin, mark}@vislab.ucr.edu

Abstract

This paper presents the design, implementation and
testing of a real-time system using computer vision and
machine learning techniques to demonstrate learning
behavior in a miniature mobile robot. The miniature robot,
through environmental sensing, learns to navigate a maze
choosing the optimum route. Several reinforcement learning
based algorithms, such as Q-learning, Q(A)-learning , fast
online Q(A)-learning and DYNA structure, are considered.
Experimental results based on simulation and an integrated
real-time system are presented for varying density of
obstacles in a 15x15 maze.

1. Introduction

Real-time robot learning has been a very challenging and
active research area for several years [3]. Reinforcement
learning has been applied to robot learning and machine
intelligence tasks, and several different techniques have
been developed [8, 9, 11]. In this paper, we consider a
systematic comparison of some key reinforcement learning
techniques, such as Q-learning, Q(A)-learning, fast Q(A)-
learning, DYNA-based learning and an algorithm that
combines heuristics with Q-learning. First, we compare
these algorithms in simulation for navigation in a maze that
may contain a number of obstacles. Second, we build a real
maze and a miniature robot equipped with basic sensors and
a vision camera that monitors the activity of the robot. We
integrate a number of reinforcement learning techniques for
real-time navigation and control of the miniature robot.

In Section 2, we present the related research using
reinforcement learning. This is followed by a discussion of
several reinforcement learning algorithms that we compare
in Section 3. Here we also present the details of the robot,
interface and the integrated learning system. Section 4
presents experimental results, both in simulation and in real
time. Finally, Section 5 presents the conclusions of the
paper.

2. Related Research
Asada et al. [1] present a method for vision based
reinforcement learning where a robot learns to shoot a ball

0-7803-6475-9/01/$10.00© 2001 IEEE 491

into a goal. The robots use a technique called “learning from
easy missions,” which reduces the learning time to about the
linear order in the size of the state space. Yamagnchi et al.
[13, 14] propagate learned behaviors of a virtual agent to a
physical robot in order to accelerate learning in a physical
environment. Reinforcement learning is used as the basis of
the ball-pushing task. Suh et al. [10] extend Q-learning that
incorporates a region-based reward to solve a structural
credit assignment problem and a triangular type Q-value
model. This may enable a robot to move smoothly in a real
maze. Hailiu and Sommer [5] embed syntax rules and
environment knowledge into the learner to achieve
satisfactory performance with a reinforcement-learning
algorithm. Huber [6] presents a hybrid architecture that
applies reinforcement on top of an automatically derived,
abstract, discrete event dynamic system supervisor. This
reduces the complexity of the learning task and allows the
incorporation of a priori knowledge. Bhanu and Peng [2]
have also developed techniques to incorporate a priori
knowledge into a reinforcement-learning framework for
integrated image segmentation and object recognition.

As compared to the previous works, we present a
systematic comparison of old and some new reinforcement-
learning algorithms (for example, fast Q(A), where
complexity is O(| actions [)), and implement and evaluate
them on a real miniature robot which has a bi-directional
wireless link with the computer. '

3. Technical Approach

Figure 1 shows various components of the integrated
system for robot learning that we developed. It consists of a
maze, an overhead camera, a robot, a vision module, a
learning module and an interface module. In the following,
first, we describe various reinforcement learning algorithms
that we have considered. This is followed by the details of
the real-time integrated system that we have developed.

3.1 Reinforcement-Learning Algorithms

The reinforcement algorithms we consider are Q-
learning, Q(A)-learning, fast Q(A)-learning and some of
their variants, such as incorporating DYNA structure and
some environmental information into the learning
algorithm.

Maze

Interface Module

Robot

'[Control Output

'i Control Input |

r Sensory Input

'[?nsory Output | ;

Environment Output {1
t| Coordinate DanZ] ;

Vision Module |

Environment Input [

r Visual Data

lRobot Path Decis.on bz

-| Coordinate Data

l Coordinate Data

Figure 1, Various modules of the rebot learning system;

o Discrete-Time Finite Markov Random Process
The discrete time finite Markov random process is a 4-
tuple (S, 4, P, R), where:

S is a finite set of states: § = {S7, S, ..., Sy }

A is a finite set of actions taken at each state.

P is a probabilistic state-transition law. It is a function
Py S xS§xA — %K where R is the set of real nos.
B =PS,=S,|S,=S,a=aj} forS,S,eSandac A
P, is the probability to reach state S; from state S;
when action ¢ is taken at state i. S, means at time t, the
agent is at state S,

R: SxA4 — 3 is the reward function mapping

(S, a)e S XA to ascalar reinforcement R(S; a).

The reward at time ¢ is 7y, and q, is the action taken at

time t. A discount factor ye [0, 1] discounts later against
immediate rewards.

As an example, in the maze problem, the state is the cell
in the maze. The actions that can be taken at each state are:
traveling north, traveling west, traveling south and traveling
east. The state-transition function is very simple and

deterministic. For example, if the agent takes the action of

going to the north, the next state is the cell above; if the cell
is in the top row, or if the cell above is occupied by an
obstacle, the agent stays in the original cell. If the agent
achieves the goal, the reward is 100. Otherwise, the reward
is 0.

® £-Greedy Policy

There is a trade-off between exploration and focusing
on the path that has already been found. In order to find a
short path, the agent must explore the search space (e.g.,
maze) actively at the beginning. But as the exploration
proceeds, we assume the agent can find a good (short)
path, so the agent should gradually focus on the path that
has been found.

We use e-greedy policy to guide the exploration. With
probability €, the agent explores the search space, and with
probability 1 - g, it goes along the best path already found.

492

So the larger the value of €, the more actively the agent
explores the search space.

Initially, the value of € is 0.9. Each time the agent finds
a path, € is decreased by 0.05. The minimum value of € is
greater than zero or a small positive number.

® Q-learning
Given (S, ap, 7 Sy4 1), standard one-step Q-learning

updates just a single Q-value Q(S;, a) as follows:
0(S,,a,) < 0(S,,a)+ae, e, is given by

e;=(r+yV(S,+,)—Q(S,,a1)), Y € [0’1]

where V(S) = max ,Q(S, a) and o is the learning rate.
The agent can take one of the actions at each cell. We

associate each action, which can be taken at each cell,

with a value. This associated value represents the

“goodness” of the corresponding action. We refer this

value as the Q-value.

Algorithm [(Q-learning):

1. Put the agent at the starting point.

2. While (not end) do

Use e-greedy policy to select an action a, .
Take the action to get (Sy, ay, ry Spy).

w

Apply Q-learning to update Q-value.
if goal is reached then
change the value of € and put the agent back at
the starting point.
end
end

4
5.
6.
7

® Q(A)-learning

Q-learning only considers the immediate reward. It
propagates the reward backward only one step. Unlike Q-
learning, Q(A)-learning not only considers the immediate
reward, it also takes the discounted future rewards into
consideration. Q(A)-learning updates the Q-values in the
following way:

Q(S,,at)<— Q(St’at)+a etl

et)' =e;+.°20,1(y A)iet+i where A € [0,1]
i=

Crpi = i ¥ Y V(S i) =V (S i)

¢ Online Q(A)

The above updates in Q(A)-learning cannot be made as
long as future rewards are not known. However, we can
compute them incrementally [7], by using eligibility
traces. We define 1/(S,a) as 1 if (S,a) occurred at time t,
and 0 otherwise. Also,

-1 -
define 1(S,a)= % (y M\)I™Ini(S,a), we have
i=1

O(S,a) < O(S,a)+a [en!(S,a)+e,l,(S,a)]

Based on the last expression, an online Q(A)-learning
algorithm is proposed in [9]. We can use Q(A)-learning to
replace the Q-learning in Algorithm 1.

e Fast Online Q(A)-learning

Fast online Q(A)-learning [12] is an improvement of
Q(A)-learning. At each step, it only updates a state-action
pair (S.a) when it is needed, thus increasing the speed of
learning. In Q(A)-learning, all the (S,a) pairs in history list
are updated at each step.

Note that the complexity of Q(A) is O(S||A|), but the
complexity of fast Q(A) is only O(A]).

The algorithm is based on the observation that only Q-
values needed at any given time are those for the possible
actions given the current state. Hence, using “lazy
learning”, we can postpone updating Q-values until they
are needed. Suppose some state-action pairs (SAP) (S, a)
occur at steps ty, fy, f3 Let us abbreviate ' =1/(S,a),
where ' is 1 for £ =1t £, t; ... and O otherwise, ¢ = 74
and define:

t . t .t
A=3% e.q!, 1.(S,a)= ¥ T1_(§,i)’ we can have :
. 1 1 . t
1= i=1 ©
k 14 r
AQS @)= lim X [en'Sa)HSa)d, ~4)]

k—oor=1
Based on the above expressions, we can build a fast online
Q(M)-learning algorithm. This algorithm relies on two
procedures: the Local update procedure calculates exact
Q-values once they are required; the Global update
procedure updates the global variables and the current Q-
value.

¢ DYNA Structure

With DYNA, we incorporate planning into learning
process. It is proposed as a simple but principled way to
achieve more efficient reinforcement learning in an
autonomous agent.

DYNA algorithm:
1. Initialize All Q(S,a) to 0 and the priority queue
PQueue to empty.
2. While (not end)
(a) x « the current state.
(b) Use e-greedy to select an action a.
(¢) Carry out action a to get the experience (x, a,
¥, 1), where x is the current state, a is the action
taken by the agent, and y is the next state and r is
the immediate reward.
(d) Apply Q-learning to update Q-value.
(¢) Computee=|r+yVQy) —Q a)| Ife>6
insert (x, a, y, r) into PQueue with key e.
() If PQueue is not empty, do planning:
i (x,a’y’ r) < first_experience(PQueue).
ii. Update:
Ox'a)=Qkxa) +a +yVy)-
Qx’a))
For each predecessor x’’ of x’ do:
Compute €= I T T .)/V(xr) - Q(x”’ax"x) | .
Ife 28 insert (x*, Gyre, X, Teoy) iNLO
PQueue with key e.

1.

0 is a parameter of the algorithm. It is a threshold value.

493

After we insert a (x, a, y, r) into PQueue, we can
extract a fixed number of (x, a, y,) from PQueue (if it
has) and use them to do planning.

e Incorporating Environmental Information

We try to allow the agent to remember and use some
environmental information. In particular, during
exploration in the maze, we make the following
assumptions:

1) Whenever the agent runs into an obstacle, it
receives a negative reward (-100) and uses it to
update the Q-value associated with the action
taken at the cell. So, the next time the agent is at
this cell, it won’t take this action, avoiding the
obstacle.

2) After the agent goes from cell §; to S5, it won’t

go back from § to S; immediately.

3) The agent remembers the cells it has visited in a
trial. It won’t visit a cell twice in a particular trial.
Here, a trial is for the agent to go from the
starting point to the goal. During exploration,
after the agent goes from §; to S and finds itself

stuck, i.e., the other 3 neighbors of S are either

boundaries or obstacles, it has two choices: to
either give up this trial and return to the starting
point or to return to S; and continue the current

trial.

We can also incorporate the environmental information
and DYNA structure together into the learning process.

3.2 Integrated Learning System
e Maze

The maze used in real experiments is an 8-foot square
block made from 2 sheets of 4x8 inch square plywood and
bordered by 2x4 boards. The surface is entirely black
with Y-inch white lines. The lines are made with white
typographer’s tape. These lines, placed horizontally and
vertically, produce a grid whereby each cell is 6x6 square
inches. There are a total of 225 cells. The only two colors
that exist on the maze are black and white.

The obstacles are made from 6-inch cubed blocks of
wood. The obstacles are all black in color. The sides
have been lined with paper to produce a smooth surface.
This smooth finish allows for better reflection of IR light.
Experiments have shown that the rough texture of the
wood creates uncertainties in object detection because of
the many different angles by which IR light can be
reflected from the obstacle’s rough wooden surface.
Uncertainties in the amount of reflected IR signal causes
errors in its detection, and thus, errors in recognizing the
presence of the obstacle.

¢ Robot Design

The robot is a miniature robot that stands 6 inches tall
with a diameter of 4.5 inches. The robot is controlled by
the Handy Board micro-controller. It is based on the
Motorola 68HC11 microprocessor. Features of the

controller include a 32K static RAM, four DC motor
output ports, a variety of sensory inputs, and a 16x2 LCD
display. The software used is Interactive C.

Figure 2. The miniature robot navigating the real
maze in the presence of obstacles.

The robot is equipped with various sensors [4] to aid in
communication with its environment and obstacle
detection. It has four modulated IR proximity sensors
mounted on its front, back, and on each of its sides for
detecting objects within a 3-inch distance. A line sensor is
mounted in the bottom front portion of the robot. It
consists of three pairs of IR emitters and collectors.
Detection of the Y-inch white line depends on the amount
of IR light that is reflected from the emitters to the
collectors.

For added insurance, a touch sensor has been added in

the front of the robot. Errors are inevitable, but the
detection of these errors is invaluable. The touch sensor
acts as a last resort by physically sensing the presence of
an obstacle upon contact. In the event that the IR
proximity sensor fails to detect the object, the touch sensor
will eventually detect it, and thus, prevent the robot from
constantly trying to run into the obstacles.
- Two Tower Hobbies TS-53 servomotors propel the
robot. These motors have been modified for continuous
rotation, meaning that the position-sensing device has
been removed as well the physical gear stopper, allowing
the motor to turn continuously. '

The communication between the robot and the host
computer is done via an RF module. The RF module is
made by Parallax, Inc. They are transmitter and receiver
pairs, model TXAM315A and RXAM315A, respectively.
Powered by 5V standard TTL output, these modules
operate at 315 MHz. Conversion of the TTL signal to
RS232 is done for communication with the computer.

The use of battery power to the robot has been
completely eliminated due to problems with consistency.
The robot was subjected to running for long hours at a
fairly predictable level of performance. Batteries could
not provide for this prolonged usage or consistency due to
the power drainage over time. The solution was to
connect it to a power cord so that any standard wall socket
can serve as the power source. This would ensure
continuous usage and power level consistency.

494

e Vision Algorithms

The vision system was implemented to ensure that
overall activity would be error free. It ensures that the
learning algorithm has correct information about the
position of the robot. Before any command is sent to the
robot, the vision system is called upon to determine the
current position of the robot. If this position does not
match the position that the learning algorithm thinks the
robot is in, then a correction algorithm is invoked, in
which case, the robot is automatically commanded to the
correct position intended by the learning algorithm. Not
until both vision and learning algorithm positions match
will the program continue.

The vision hardware is the ITEX imaging system. It is a
Modular Vision Computer (MVC) 150/40, and a CCD
camera combined with a Sun Ultra 1 computer. The
camera is mounted 10 feet above the center of the maze,
and captures images at a rate of 30 frames per second.
The image is captured in 256 gray scales. The image of
the maze consists of 512x480 pixels with a resolution of
72 pixels per inch.

Software used to control the captured images was
written in the C programming language. To detect the
robot, a circular white disc is placed atop the robot. A
white surface indicates the presence of a robot and a black
surface indicates the maze floor. The software scans the
image and looks at every sixth pixel. If the pixel value is
within a certain prescribed threshold value for white,
indicating the presence of a robot, then 4 surrounding
pixels are also sampled. If all these 5 pixels are within the
threshold value, then the robot has been located, and its
corresponding position is relayed back to the learning
algorithm for processing. The average runtime to sample
an image is 0.10 seconds.

¢ Interface

The interface program was written in the C
programming language. The program is run using the Sun
Microsystems computer under a Solaris operating system.
This is the main module that controls all other peripherals,
which includes the robot, the RF communication between
the robot and computer, the vision system, the learning
algorithm, and the user interface. All information coming
from these peripherals is routed and controlled by the
interface program.

The program begins with the initialization of the
peripherals. For the robot, it makes sure that the robot is
ready to receive commands and that it is in the correct cell
position for starting. In the event that the robot is not
initialized, the interface scheme will allow for a user
interface mode in which the user can command the robot,
test its sensors, or test its response before the main
learning program should begin. The vision system is also
initialized, meaning that it sets up the hardware, initializes
the display and calibrates the maze size. The RF
communication is also set up to receive signals through its
RS232 serial port at a rate of 300 baud.

% No vision mode Initialization State E
A o— mtlahze Vlsloﬂ*Unltlallze RoboHInltlallze Learning [f=
R A
T s pﬁ;‘;}j; send st iy‘; ot posiion
init X, ‘start (x, ’
v) il N gy ()
L h 4]
L Vison Starts —I L Robot Starts J | Learning Starts
Start —(@)
% No vision mode Run Stg‘tel
04!
[Move Robot F—J—T Call Vision 1)' Call Learning [gorat ®
! Send Robot Next e
Reporc en obo ex|
Send o start
action position function position eixe/?rir(l)r(;lﬁn ; position
(xy) call (x.y) xy)
L
[Robot Moves I l Vision Reports | | Learning Decides]

-Figure 3. Details of initialization procedure and the run loop.

The sequence of events to control the robot is as follows.
First of all, it queries the robot for environmental
information. This means that it gathers information from
the robot about surrounding obstacles in its 4 cardinal
directions relative to the robot. Vision information is next
queried for the robot’s position. The intended position,
the position assumed by the interface program, of the
robot is compared against the actual position gathered
from the vision. Discrepancies between the intended
position and the actual position are handled by a position-
correction algorithm, which relocates the robot to the
correct position. Once both positions agree, the learning
algorithm is called to determine the next position. The
interface next commands the robot to this new position
and this entire sequence of events is repeated until the goal
is found. From goal position, the robot is directed to its
starting position using a gradient-descent algorithm. From
there, the next trial will begin. When the maximum
number of trials has been reached, the shortest path is
calculated based upon the type of learning algorithm used
in the interface program. The entire event is done in real-
time. Figure 3 shows the details of initialization procedure
and the run loop.

4. Experimental Results
4.1 Simulation of Reinforcement-Learning
Algorithms

A maze is a two-dimensional array with a cell as the
starting point and some cells as a goal or goals. There may
also be some cells occupied by obstacles. The agent can
move from a cell to any one of its 4 direct neighbors with
the restriction that the agent cannot move out of the maze,
or into a cell occupied by an obstacle. The task of the
agent is to find a good path from the starting point to the
goals efficiently. A good path should be a short path, if it
is not the shortest one.

495

Figure 4 is an example maze. The size of the maze is
18%12. The light gray cell on the left side is the starting
point; the four cells on the upper right side are the goal;
the dark gray cells are obstacles and the rest are empty
cells. One of the paths from the starting point to the goals
is also shown and it consists of a sequence of mid gray
cells. The path shown here is one of the shortest paths
with length 27 from the starting point to the goals.

The initial value of € is 0.9. Each time the agent finds a
path, € is decreased by 0.05. The minimum value of € is
0.1. The number of trials is 1000, i.e., the algorithm stops
after the agent goes from the starting point to the goals
1000 times. The values of the parameters are: 0=0.5,
¥=0.95, A=0.9. Threshold value for eligibility trace is
0.0001 and 6=10. Figure 5 shows the learning curves. The
horizontal axis represents the number of successful trials
and the vertical axis represents the number of steps. Here,
we only show the first 200 trials.

Paih Found

Figure 4. Simulated maze

Figure 5(a) is the learning curve of pure Q-learning. The
length of the path found by the agent is 28. The total
number of steps in all 1000 trials is 80156. The algorithm
runs in less than 1 second.

Figure 5(b) and 5(c) show the learning curves of pure
Q(M) and fast Q(A)-learning. The length of the path found
by the agent is 30. Q(A) and fast Q(A)-learning take 48571
and 50684 steps, and run in 3 and 1 seconds, respectively.
It can be seen that Q(A)-learning takes much fewer steps
than Q-learning and fast Q(A)-learning is much faster than
Q(N)-learning.

Figure 5(d) shows the learning curve of Q-learning
incorporating DYNA planning. The length of the path
found by the agent is 27. Each time an experience is
inserted into the PQueue, we extract at most 10
experiences from the PQueue and use them to do the
planning. The total number of steps in all 1000 trials is

34145. The algorithm runs in 3 seconds. It can be seen -

after using DYNA planning, the agent takes fewer total
number of steps than it takes in Q and Q(A)-learning

Figure 5(e) shows the learning curves of incorporating
some environmental information into Q-learning. In this
experiment, the agent doesn’t visit a cell twice in a trial,
and if the agent gets stuck during exploration, it doesn’t
give up the current trial. The length of the path found by
the agent is 28. The total number of steps is 45368. The
algorithm runs in less than 1 second. It can be seen that
after using some environmental information, the agent
takes fewer total number of steps than it takes in pure Q-
learning.

From the above curves, we can see that initially it takes
the agent a large number of steps, because at that time, the
agent has no knowledge about the maze; it can only
explore the maze blindly. As learning proceeds and the
agent gains more and more knowledge, the number of
steps in a trial drops dramatically.

Although reinforcement learning can solve the search
problem, it is expensive. It takes the agent many steps to
find a good path, especially in the initial trials. It can be
seen that Q-learning incorporated with DYNA or
environmental -information reduce about 50 percent of the
number of steps taken by the agent. The combination of
Q-learning and DYNA gave the best results.

Learning Performance

5000
4000 -
3000 -
2000 -
1000 -

Number of Steps

0 50 100 150 200
Number of Trials
(a) Q-learning

496

Learning Performance

6000
[7/]
g,- 5000
2]
s 4000 -
£ 3000 -
E
3 2000
1000 -
O D0 . .A.l A -
0 50 100 150 200
Number of Trials
(b) Q(A) learning
Learning Performance
7000
a 6000 -
@ 5000 -
(2]
%5 4000
8 3000 -
Q2
g 2000 -
Z 1000
0! - ‘ -
0 50 100 150 200
Number of Trials
(c) fast Q(A) learning
Learning Performance
2500
& 2000 |
2
® 1500
[<]
2 1000
£
Z 500 - k
0 : ;
0 50 100 150 200
Number of Trials
(d) Q-learning with DYNA
Learning Performance
1800
® 1600 -
oy 1400 -
» 1200
S 1000 -
E 800
E o
2 200
0 ¢ . - A - A
0 50 100 150 200

Number of Trials
(e) Q-learning + environment

Figure S. Learning performance for various
algorithms.

10 msec

;

70 msec

Figure 6. System-timing diagram.

4.2 Integrated Real-Time System

Figure 6 shows the time needed to complete one
iteration of the learning process.

The results of the 15x15 maze with 28 obstacles are
shown in Figure 7. The figure shows the decrement of
actions taken as the number of trials increases. Before the
first 8 trials, however, the number of actions taken
oscillates tremendously, but as the number of trials
increases, the graph begins to converge upon a set value.
This value is the number of actions taken to produce the
shortest path from start to goal.

In Figure 8, this same 15x15 maze result is graphed
along with the results from a 6x6 maze with 12 obstacles.
From the 6x6 maze, the results indicate the same type of
oscillation found in the beginning trials but converges in
later trials. 25 total trials were done for the 6x6 maze.
After about 12 trials, the robot shows little oscillation in
the number of actions taken and the values are at their
minimum, meaning that the robot travels the shortest path
nearly every time from start to goal.

In Figure 9, results from two 6xX6 maze events were
graphed against each other. The first event contained 6
obstacles while the second event contained 12 obstacles.
Because the size of the maze was the same, similar results
can be seen. In both events, the number of actions taken
tends to fluctuate within roughly the same range.
However, both experiments show that the 12-obstacle
event tends to converge more quickly than the 6-obstacle
event. With more obstacles on the maze, there are fewer
cells for the robot to travel, and hence, it takes the robot a
shorter time to go from the starting point to the goal. With
fewer obstacles, there are more cells to explore, and so it
requires the robot to take more actions.

Results for the Q and Q(A) algorithms for a 6x6 maze
are plotted against each other in Figure 10. From this
graph, there appears to be few significant differences
between the two learning algorithms. Both begin to
converge upon the shortest path at approximately the same
number of trials. Overall, the Q(A) algorithm takes fewer
actions during the entire experiment, which suggests that it
is faster in finding the shortest path, but for a better
comparison, more trials on a larger size maze should be
done.

497

Q(M)-learning was tested on a larger size maze of 15x15
with 28 obstacles. This experiment was conducted under
the same parameters as the Q-Learning experiment shown
in Figure 7, but with the Q(A) algorithm. The results of
this test are shown in Figure 11. The results show that in
the Q(A) algorithm, the number of steps in the later trials
is lower than the Q-Learning algorithm. After 4 trials, the
number of steps decreases below that of the Q-Learning
algorithm. The number of steps shows a significant
decrease after 10 trials.

Figure 12 shows two results of the Q(A) experiments,
one with 6 obstacles and the other with 12 obstacles.
Similar to the results in Figure 9, these graphs show that
the 12-obstacle experiment converges more quickly upon
the shortest path than the 6-obstacle experiment,
ascertaining the fact that with more obstacles, there are
fewer cells to explore and hence, faster convergence upon
the shortest path.

4000
3500
3000
2500
2000

1500

1000
500 -
0

Number of Steps

0 3 Number®f Trials 12

Figure 7. Q-learning results for 15x15 maze,
28 obstacles.

4000 T
, 0! — 6x6 maze —~ — — 15x15 maze
a 1
% 3000 \
s 2500 1 | .
c 2000 | L N
Lm0 t AN
£ v/ \I’ !
3 1000 | ,1 \/ \\

5001 1\ N~

o A -
0 5 NuMiber of Tfals 20 2
Figure 8. Q-learning results for different
maze sizes.

350 - | 6 obstacles — == — 12 obstacles ||
o 300 - -]l
& 250
%5 200 -
E 150 |
£ 100 n
= 50. '\
Y
0 g : T -
0 5 10 15 20 25
Number of Trials
Figure 9. Q-learning resulis for 6x6 maze.
350 e e —-
7]
§ %00 |——Q — — —Q-Lambda
» 250 N
%S 200 4\
g 150
100 -
g 50 |
Z 9 : : : !
0 5 10 15 20 25
Number of Trials
Figure 10. Results for 6x6 maze, 6
obstacles.
4000
@ 3500 II N\ Q — — — Q-Lambda
2 3000 \ T
17}
- 2500 -
2 2000
2 1500 -
E 1000
Z 500
0 -
0 2 4 6 8 10 12
Number of Trials
Figure 11. Results for 15x15 maze, 28
obstacles.
600
§ 500 v ‘ 6 obstacles — —™ 12 obstacles—l
& 400 “
[S)
3004 \
5 M
200 \/7N
§ 100 SN
2 \
0 > -
0 5 10 15 20 25

Number of Trials
Figure 12. Q-lambda results for 6x6 maze.

5. Conclusions

In this paper, we have presented a systematic
comparison of several reinforceraent learning algorithms.
We find that the fast Q(A) and Q-learning with DYNA
structure are the best. In the future, we plan to incorporate
a priori task knowledge into these techniques and have

498

hierarchical abstraction of the state space in a multi-agent
framework for robotic applications.

o Acknowledgments: This work was supported by a NSF
grant EIA-9610082-003. The authors would like to
acknowledge the support they received from Roberto
Carrillo, Vincent Hernandez, Tom Huyuh, Jing Peng,
Michael Boshra, Sohail Nadimi, Stephanie Fonder,
Grinnell Jones and James Harris.

6. References

[1] M. Asada et al., “Vision-based reinforcement learning

for purposive behavior acquisition,” Proc IEEE Int.

~ Conf. Robotics & Automation, pp. 146-153, May
1995.

B. Bhanu and Jing Peng, “Adaptive integrated image

segmentation and object recognition,” IEEE Trans. on

Systems, Man and Cybernetics, Vol. 30, No. 4, pp.

427-441, November 2000.

J. H. Connell and S. Mahadevan, Robot Learning,

Kluwer Academic Publishers, 1993.

H. R. Everett, Sensors for Mobile Robots — Theory

and Application. A. K. Peters, Ltd, MA, 1995.

G. Hailu, G. Sommer, “Embedding knowledge in

reinforcement learning,” Proc. 8th Int. Conf. On

Artificial Neural Networks, pp. 1133-1138, September

1998.

M. Huber, “A hybrid architecture for hierarchical

reinforcement learning,” Proc. IEEE Int. Conf. On

Robotics & Automation, pp. 3290-3295, April 2000.

J. Peng and R. J. Williams, “Incremental multi-step

Q-learning,” Machine Learning, vol. 22, No. 1-3, pp.

283 — 290, Kluwer Academic Publishers, January —

March 1996.

[8] J. Peng and B. Bhanu, “Closed loop object

recognition using reinforcement learning,” [EEE

Trans. on Pattern Analysis and Machine Intelligence,

Vol. 20, No. 2, pp 139-154, February 1998.

J. Peng and B. Bhanu, “Delayed reinforcement

learning for adaptive image segmentation and

feature extraction,” IEEE Trans. on System, Man

and Cybernetics, pp 482 — 488, August 1998.

[10]H. Suh, J. H. Kim and S. R. Oh, “Region based Q-
learning for intelligent robot systems,” IEEE Int.
Symp. on Computational Intelligence in Robotics &
Automation, pp. 172-178, July 1997.

[11]R. S. Sutton and A. G. Barto, Reinforcement
Learning, MIT Press, 1998.

[12]M. Wiering and J. Schmidhuber, “Fast online
Q(N),” Machine Learning, Vol. 33, No. 1, pp. 105-
115, October 1998.

[13]T. Yamagnchi et al., “Propagating learned behaviors
from a virtual agent to a physical robot in
reinforcement learning,” Proc. IEEE Int. Conf On
Evolutionary Computation, pp. 855-859, May 1996.

[14]T. Yamagnchi et al., “Reinforcement learning for a
real robot in a real environment,” European Conf. On
Artificial Intelligence, pp. 694-698, August 1996.

(2]

B3]

(4]

(3]

(el

(71

(9]

